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Abstrac:t-A method, based on the improved thick shell theory ofMirsky and Herrmann for circular
thick cylindrical shells, is presented for analyzing the free vibrations of noncircular thick cylindrical
shells having circumferential thickness variation. The equations of motion are solved exactly by
using a power series expansion. Frequencies and mode shapes are presented for elliptical cylindrical
shells having second degree thickness variation. The effects of shear deformation and rotary inertia
upon the frequencies are discussed by comparing results from the present theory with those of thin
shell theory.

I. INTRODUCTION

There exist a large number of references that deal with the vibrations of axisymmetric shells
of revolution (cf. Leissa, 1973). Recently, some studies on the vibrations of noncircular
cylindrical shells such as an elliptical cylindrical shell or an oval shell have been made (cf.
Suzuki et al., 1983), but most of these works treat shells having uniform thickness.
The present authors (Suzuki and Leissa, 1985) studied the free vibrations of noncircular
cylindrical shells having circumferentially varying thickness by using thin shell theory. They
developed an exact solution procedure for determining the free vibration frequencies and
mode shapes of noncircular cylindrical shells having circumferentially varying thickness
and the two opposite, curved edges supported by shear diaphragms (also called "freely
supported ends").

The purpose of the present work is to present a set of governing equations and a
method for analyzing the free vibrations of noncircular thick cylindrical shells having
circumferentially varying thickness. Mirsky and Herrmann (1957) and Mirsky (1964) have
given an excellent improved thick shell theory for investigating the vibrations of circular
thick cylindrical shells. The present work is an extension to noncircular cylindrical shells
of their improved thick shell theory for circular thick cylindrical shells. Equations ofmotion
and boundary conditions that include the effects of shear deformation and rotary inertia
are derived, and the equations ofmotion are solved exactly by using power series expansions.
The method is demonstrated for a set ofelliptical shells having quadratic thickness variation
and both ends supported by shear diaphragms. Numerical results obtained by the present
method are compared with those determined from thin shell theory, which were previously
given by Suzuki and Leissa (1985), and the effects of shear deformation and rotary inertia
upon the natural frequencies are discussed.

2. ANALYSIS

2.1. Lagrangian formulation of equations of motion and boundary conditions
Let us consider the free vibrations ofa noncircular thick cylindrical shell for which the

centerline of the cross-section is a smooth curve, and the thickness varies along the center-

t On leave from Ohio State University.
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line~ but is constant along the generator. This centerline. which is the intersection of the
middle surface of the shell with the plane x' = const, is shown in Fig. 1. Let the length of
the shell be I == Wo, where '0 is a representative radius of curvature parameter, and let the
curvature at any point along the centerline be I!p. Take the coordinate axis x' along the
generator of the middle surface, the arc length s measured along the centerline of the cross­
section (the centerline and the generator being orthogonal) and the z-axis towards the
center of curvature. Let the thickness of the shell be h = hoH(s), where ho is the thickness
at s = 0 and H(s) is a function of s. Employ a nondimensional coordinate x == xf/ro and
denote the displacements in the x', sand z directions by ii. t':; and .v, respectively.

It is convenient to use the following transformation of variable:

d8 1 G
- = - =: -<1>(8)
ds p ro

(1)

where 8 is a variable that describes an angle between the tangent to the centerline curve at
the origin of s and the one at an arbitrary point on the centerline, Gis a constant determined
by the shape of the curve and <1>(8) is a function of e. As an example, consider an ellipse,
for which the equation is denoted by the rectangular coordinates (~" ~2) as ~ I = a cos 1],

~ 2 = b sin 1], in which 2a, 2b and '1 are the major and minor axes and a parameter,
respectively. Setting the representative radius r 0 and the ellipticity of the curve Ito as

(2)

one obtains

tan 0 =J (I +Jlo)/(I - .uo) tan '1, ~ = 1- J.t5, ¢l(0);=: (l +.uo cos 20) 3,'2. (3)

One can denote <1l(8) by a simple expression for a number ofother curves as well (cf. Suzuki
et aI., 1978).

Following the improved thick shell theory for circular cylindrical shells of Mirsky and
Herrmann (1957) and Mirsky (1964), it is assumed that the displacements it, vand IV are
represented approximately by

u= [u+ ~ l/Jx] sin e>(

fj = [v+ :0 l/J9] sin wt

w= w sin wt (4)

where wand t denote the circular frequency and time, respectively, and u, v, w, I/!J< and 1/18
are functions of x and 8. The normal and the shearing strain expressions at any point are

Fig. I. Coordinates.
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obtained from Love (1927):
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88 = _1_ (OD -w),
p-z 00

ow
8z = oz'

I (ow ) OV-Y8z=-- -+6 +-p-z 00 oz

ou I ow
-Yzx=-+-­

oz '0 ox

I cu I OD
Yx8=---+--'

p-z cO '0 ox
(5)

Substituting eqns (4) into eqns (5), one has

I (au z Ol/lx) .
8x =- - +- - Sm wt,'0 ax '0 ox

I (ov Z 01/18) .
88 = -- - -w+ - - Sm wt

p-z 00 '0 00

[
I (au z Ol/lx) I (CV Z 01/18)] .8z = 0, Yx8= -- -+-- +- -+-- Sm wt

p-z 00 '0 00 '0 ex '0 ox

Assuming a state of plane stress and that shearing stresses obey Hooke's law, one has

(6)

(1z = 0,
k' Eyzx

'zx = 2(1 +v) (7)

where E, v and k' are Young's modulus, Poisson's ratio and the shear coefficient, respec­
tively. Let us now define the Lagrangian for a vibratory period (,I) as follows:

where Po denotes the mass density. Substituting eqns (I) and (4)-(7) into eqn (8) and using
the following relations

fh
l
2 dz h ( h2

)-=- 1+-
-hI2P-Z • P 12p2 '

fhl 2 Z2 h3

--dz=-
-hI2P-Z • 12p'

f
hl 2 Z h3

--dz=--2
-hI2P-Z • 12p

f
hl2 Z3 fhl2 Z4

--dz* --dz*O,
-hI2P-Z -h/2P-Z

(9)
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equation (8) becomes
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[{au (av )}2 au (cv )]+PoH - +G<I> - -w -4(G<I>- --wox oe ox cO

+H3 [(0I/lx)2 + G2<1>2 {01/l8 +G<I>(OV _W)}1 + 2G<I>{(1- 2() ol/lx 01/18 _ au Ol/lx}]Ox oe oe ox oe ox ox

( ou OV)2 3 [(01/18)2 2 2 (Cl/lx OU)2+Po(H G<I> oe + Ox + (H ox + G <I> ce + G<I> oe

+2G<1>(ol/lx 01/18 _ OV OI/l8)]+k'([PoH(l/Ix+ ~W)1oe ox ox ox ex

where

(10)

h 2 4
4 Po oW '0

OCo =
Do

P
_ 12,~

0- 2'ho

Eh~ I-v
Do = 12(I-v2)' (= -2-' (11)

Taking the first variation ofL to obtain the stationary condition ofthe Lagrangian, (jL =0,
one obtains

(12)

where

(13)



Vibrations of noncircular thick cylindrical shells

and where

[ au 2 2 2 (OV ) 2 2 2 0"'8JT2 = GH Po(l-2() OX +(/3o+G H CI> )GCI> 0(J -w +G H CI> 0(J ,

T3=k'(GH(Po +G
2
H

2
C1>2) {GCI>(V+ ~;)+"'8}'

Observing that
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(14)

(15)

one may readily see that the quantities (T.. T2 , T3)Do/r~G, (T4, T" T6)DoCl>/r~ are pro­
portional to the resultant forces per unit length acting on the shell element and the quantities
(M I' M 2)Do/rgG, (M3, M4)DoCl>/rg to the resultant moments, respectively. Euler's equations
(equations of motion) are

(16)

The boundary conditions at 8 = (Jl and (J =82 are

(17)
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For boundaries at x = XI and x = X2 they are

(18)

2.2. Solutions of the equations of motion for freely supported ends
Consider a noncircular cylindrical shell having its curved ends supported by shear

diaphragms (or freely supported). That is, the conditions to be imposed at the ends are

(19)

which satisfy eqns (18). Equations (19) are exactly satisfied at x = 0 and II by choosing

ex: mn
{u,l/tx} = L {um(l}),l/Jxm«J>} cos-x

m=1 tl

ex: mn
{v,l/Jo, w} = L {vm({,1),l/Jom(e), lI'm({J)} sin-x

m=1 II
(20)

where m is an integer. Substituting the displacements (20) into the equations of motion (16)
yields the following set of ordinary differential equations:

where

(X~ 3 ( dM 1m)Po H (l/txm - GcI>um)+ cI> kM3m - T6m + (fO = 0

ocg 3 dM2m
Po H (t/JOm/cI>-Gvm)- T3m/GcI> +~ -kM4m = 0

k=mn/fJ.

(21)

(22)

and Tim, T2m, ... , M 4m are expressions obtained by substituting eqns (20) into expressions
TJ, T2 , •• ·, M 4 in eqns (14) and omitting sin kx or cos kx. Exact solutions to eqns (21) may
be obtained by expressing the ellipticity function (cI» and the thickness functions (H, H 2

, ••• )

as infinite power series in e, and assuming solutions for Um, Vm, Wm, l/Jxm and t/JOm which are
also infinite power series in e. The solution procedure will be demonstrated here for shells
having cross-sections with one or more axes of symmetry, although it can also be carried
out when no symmetry is present.

Let (J = 0 correspond to a symmetry axis. Then the variable coefficients of eqns (21)
may be expanded as

x

= LcI>o{G:.H:}e:n~, (23)
n= 0
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n

{B:,C:,D:,E:,F:,G:,H:} = L {A:_pA:,A:_pB:,
p=O

26\

One can denote <1>2 as in eqn (23) for the curves for which the curvatures are expressed as
even functions of O. Equations (21) have two solutions: one in which um/<I>, Wm, l/Jxm are
even functions of 0 and t'm, l/Jom/<I> are odd functions of 0, and another in which um/<I>, Wm.
l/Jxm are odd functions of 0 and t'm, l/Jom/<I> are even functions of O. They are considered
separately.

(i) In the case where um/<I> is an even function of 0, one takes:

;x, 00 00

um/<I> = L An0
2n, Vm= L Bn02n+', Wm= L Cn0

2n
n=O n=O n=O

;x, 00

l/Jxm = L Dn02n , l/Jom/<I> = L En02n+'
n=O n=O

(25)

where An' En, en, J)n and l:;n are I:oetlil:ients whil:h are determined in turn as follows.
Substituting eqns (25) into eqns (21) yields

00

L «(G 2<1>o(2n + 1)(2n+2)[l1o(G2<1>oF~+ PoA~)An+ 1+GF~Dn+ I] +.fna)02n = 0
n-O

:c

L (G 2<1>o(2n+2)(2n+ 3)[D~(Po +G2<1>oE~)Bn+ 1+G<I>ol1oF~En+ d+.fnb)02n+ I = 0
n=O

00

L (k' (G 2<1>oD~<Po+G2<1>oE~)(2n+ 1)(2n+2)Cn+1+.fnc>02n = 0
n= 0

00

L «(G2<1>oF~(2n+ 1)(2n+2)(G<I>o110An+ I +Dn+I) +.fnd)02n = 0
n=O

where fna, .fnb, .fne> .fnd and in, are series defined in the Appendix.

(ii) In the case where um/<I> is an odd function of 0, one takes:
00

um/<I> = L An02n+I,

n=O
00

./, = '" D 02n+ 1V'xm L- n ,
n=O

00 00

Vm= L Bn02n , Wm= L Cn0
2n+'

n=O n=O

00

l/JOm/<I> = L En02n
n=O

(27)

where An, Bn, Cn, Dnand En are undetermined coefficients. Substituting eqns (27) into eqns
(21) yields

:c

L «(G 2<1>o(2n+2)(2n+ 3)[l1o(PoA~+G2<1>oF~)An+ I +GF~Dn+ d+.fna)02n+ 1 = 0
n=O

:c

L (G 2<1>o(2n+ 1)(2n+2)[D~<po +G2<1>oE~)Bn+ I + G<I>o"oF~En+ d+inb)02n =0
n-O

ao

L (k' 'G2<1>oD~(Po+G2<1>oE~)(2n+2)(2n+3)Cn+ 1+.fnc>o2n+ I = 0
n=O

ao

L ('G2<1>oF~(2n+2)(2n+3)[G<I>o"oAn+ I +Dn+d+.fnd)02n+ I = 0
n=O

:c

L (G2<1>o"oC~(2n+ 1)(2n+2)(GBn+I +En+,)+Fne)02n = 0 (28)
n=O
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where !na, !nb' !ne> fnd and !ne are given in the Appendix. From each set of eqns (26) and
(28) used independently, the coefficients An+" Bn+ I. Cn + I' Dn+ 1 and En + 1 (n ~ 0) are
obtained in terms of A o, Bo, Co, Do and Eo, with the last five left undetermined. Hence,
five independent solutions arise from each set. In this way, 10 independent solutions for the
complete problem are obtained. The general solutions of eqns (21) are expressed by com­
bining linearly these 10 independent solutions. However. when the cross-section is symmetric
about e= 0, the vibrations are divided into modes which are either symmetric or anti­
symmetric with respect to the axis of symmetry passing through the axis e= O. Then the
displacements given by eqns (25) are the solutions for the symmetric modes of vibration.
and those from eqns (27) are for the antisymmetric modes.

3. THIN SHELL THEORY (CLASSICAL THEORY)

In thin shell theory, the effects of shear deformation and rotary inertia are neglected.
Setting Yzx = YOz = 0 in eqns (6), one finds

(29)

Substituting eqn (29) into Bn eo and Yxo in eqns (6) yields

ex = ~ (cu _!- 02~) sin rot,
'0 ax '0 ax

eo = _1 [OV -w-z~ {~(ow +v)}] sin rot,
p - z oe oe p oe

{ I CU 1( z) CD Z (1 I) 8
2
w }Yxo = -- - + - 1- - - - - - +-- --- sin rot.

p-z oe,o p ax '0 p P-Z ax oe (30)

These strains are identical to those for the thin shell theory derived by Suzuki et al. (1983).
Substituting eqns (30) into eqns (10) and neglecting the terms ofrotary inertia corresponding
to t/tx and t/to, one obtains the Lagrangian for the thin shell theory that corresponds with
that derived previously by the present authors (Suzuki and Leissa, 1985).

4. NUMERICAL CALCULAnONS

Numerical calculations are made for elliptical cylindrical shells of variable thickness.
For this type of curvature, <1>0 and 1"fn in eqns (23) are

(31)

To be specific, the following shell parameters are used: fJo = 0.2 (-alb = 1.22), /30 = 500
('olho= 6.5) or 1000 ('olho= 9.1), v = 0.3 and k' = n2/12, which is the shear coefficient
used by Mirsky and Herrmann (1957) and Mirsky (1964) for circular thick cylindrical
shells. The cross-section is symmetric with respect to e= 0, n, and the thickness variation
B(e) in eqn (23) is taken as

B(e) = 1+dJ 2 (32)

where e is an arbitrary constant. In the calculations, three cases where e = 0, 0.2, 0.4 were
considered. These yield ratios of thickness at e= nl2 to that at () = °which are I, 1.493
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and 1.987. The axes of symmetry are the ~ I·axi~ passing through the points e= 0, 11: and
the ~2-axis passing through the points e= ±11:/2. Vibrations are divided into four symmetry
classes (S-S, S-A, A-S, A-A), depending on whether they are symmetric (S) or anti­
symmetric (A) with respect to the e 1- and e2·axes, respectively. These symmetry classes are
obtained by utilizing the symmetric functions (25) or the antisymmetric functions (27), and
by enforcing the conditions at e= 11:/2 that either

or

T I = V = T3 = M 1 = t/Je = 0 (symmetric)

U= T2 = W = t/Jx = M 2 = 0 (antisymmetric).

(33)

(34)

In this work, only the frequency curves for (S-S) and (A-S) are shown because the (A-A)
curves are very similar to the (S-S) ones, and the (S-A) curves are also very similar to the
(A-S) ones, as found in Suzuki and Leissa (1985).

The displacement functions Um, Vm, Wm, t/Jxm and t/Jem were calculated by retaining 100
terms for each of the coefficients An, Bn, Cn, Dnand En in eqns (25) and (27). Each of the
independent solutions corresponding to each symmetry class was obtained by setting one
ofA o, Bo, Co, Do and Eo equal to unity and the others equal to zero. The rate ofconvergence
of the solutions varies with parameters such as Po, a.~/Po, k, 8 and Jl.o. In general, the
convergence becomes worse as Jl.o, Po, 8, a.~/Po or k becomes larger. The first three parameters
in particular have larger influences on the convergence.

Table I shows the convergence of the solutions arising from eqn (25). In the table
are shown the significant figures of accuracy of the functions obtained from (A o = 1,
Bo= Co = Do = Eo = 0) in the case where a.~/Po = 0.05 and k = 4. The numbers 75, 66, ...
in Table 1 show that 75 or 66 terms are necessary to obtain a function with accuracies of
10 digits, and the numbers (9), (6), ... show that the function converges with accuracies of
9 or 6 digits by 100 terms. For the other four sets of solutions, the same statement can be
made. The convergence of the solutions from eqn (27) is similar. The range where the
solutions with adequate accuracies can most easily be obtained is Po < 1000, Jl.o < 0.4 and
o~ 8 < 0.4.

The general solutions to eqns (21) for symmetric vibration about the e ,-axis, for
example, are expressed by linearly combining five independent solutions from eqn (25) as
follows:

5

{um,Vm, wm,t/Jxm,t/Jem} = L A.i{Umi'Vmi, Wmi,t/Jxmi,t/Jemi}
i-I

(35)

where A.I' .•. , A. 5 are arbitrary constants. Consequently, considering the symmetry conditions
of eqns (33) and (34), one may obtain the frequency equations for (S-S) and (S-A) modes
in the form of a fifth-order determinant. One can obtain similarly the frequency equations
for (A-S) and (A-A) modes using the solutions from eqn (27). The roots of these finite
(and relatively small) order frequency determinants are exact values of the nondimensional
frequency parameter a.~/Po' The nondimensional frequency parameter a.~/Po is related to
the frequency by

a.~/Po = w 2rijpo(l-v2 )/E. (36)

Table 1. Convergence of solutions from eqn (25) «(I.~/Po = 0.05, k = 4)

110 Po e u.. v.. w.. Ua.. Va.. T I.. Tu. TJ., M,.. Mu.

0 75 66 64 69 75 72 78 75 78 76
0.2 500 0.2 86 75 81 82 85 78 89 85 84 74

0.4 (9) 95 (6) (8) (7) (7) (8) 85 (8) (4)
1000 0.2 98 92 92 94 98 87 90 92 92 91

0.3 500 0 (9) 92 86 95 (9) 95 95 (9) (9) (9)
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In the calculations for the results shown hereafter, 130, eand k were first chosen, and then
a search was conducted for the values of Cl.gl13o which satisfy the frequency equations.

Figures 2-5 show the comparison between the classical and the improved thick shell
theories in nondimensional frequency parameterCl.~/Po versus k = mnroll for the (5-S) and
(A-S) modes. The curves are for the first, second and third modes of vibration in the order
from below, in which the curves are depicted by joining the points for the values of rxri!Po
at k = 0.5, 1.0, 1.5, ... ,4.0. The numbers I, ... , 12 on the curves for classical theory in Figs
2 and 3 denote the points at which the mode shapes will be shown later in Figs 8 and 9.
The curves for the improved thick shell theory are always below those for the classical
theory. The difference between both the theories typically increases as k (and hence roll)
becomes large or the vibration mode becomes higher. As seen from Figs 4 and 5, the
difference in the case where Po = 1000 becomes smaller than that in the case where /30 = 500.

Figures 6 and 7 show the effects of changing 8 upon the nondimensional frequency
parameter rx6l13o versus k. The curves become higher with increasing f..

2

o

_. - Classical theory

--Improved theory

6

Fig. 2. Frequency curves, (&--S) modes (Po = 500, E = 0).

_.- Classicul theory

2 -- Improved theory

o
k

Fig. 3. Frequency curves, (A-S) modes (Pu =500, e = 0).
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/
t

---Classical theor;

--Imp","" tbw, /

'j/,
'/~-/ ,r ,I

o 2

k

3 4

Fig. 4. Frequency curves, (5-S) modes (Po <= 1000, e = 0.2).

---Classical theory

- Improved theory

ol.-~.....L--~---:----I

Fig. 5. Frequency curves, (A-S) modes <Po <= 1000, e= 0.2).

Figures 8-11 depict the mode shapes of e1liptical cylindrical shells having uniform
thickness (8 = 0). They are the displacements Wm for 0 ~ (J ~ n/2, in which the maximum
amplitude is taken to be unity. Mode numbering corresponds to the numbered points of
the frequency curves found in Figs 2, 3, 6 and 7. The mode shapes resulting from both
theories are, in most cases, very similar to each other for the lower modes. The mode shapes
in the case where 8 = 0.2,0.4, which are not depicted here, are also similar to those of8 = O.

Table 2 shows the effect of the shear coefficient change upon the relation between
a~/po and k. The values of aci/po in the case where k' = 0.850 are a little larger in the third
decimal place than those where k' = n 2/12. From this, one finds that the shear coefficient
has little effect upon the frequencies.
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I

I -- .-0
---- .-0.2

I --- .-0.4
2

I,
/ 12

I II

0 /~.j
I

o 2
k

Fig. 6. Frequency curves, (S-S) modes (improved theory, Po = 500).

/ i
I I

/
,

I 12
I

I_.-0 I
2

----.-0.2 I
I,

o

Fig. 7. Frequency curves, (A-S) modes (improved theory, Po "" 5(0).

"tV
Fig. 8. Mode shapes corresponding to numbered points in Fig. 2 (classical theory).
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_I

'oLLff"2
-l

IOO~'"

II~

Fig. 9. Mode shapes corresponding to numbered points in Fig. 3 (classical theory).

--

E

:O~."

Fig. 10. Mode shapes corresponding to numbered points in Fig. 6 (8 = 0).

I I -I I

,-1Lff'/2 4:~'" 70~'" IO:t-~."0

2~ 5~ 8~ II~

.~ 121f4J
Fig. 11. Mode shapes coprresponding to numbered points in Fig. 7 (8 = 0).
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Table 2. Effect of shear coefficient (k') upon :X~i130 (S-S, flo = 500, E = 0)

Mode k' k=1 k=2 k = 3 k=4

1st 0.822 0.049 0.247 0.559 0.984
0.850 0.049 0.247 0.559 0.986

2nd
0.822 0.420 0.605 0.989 1.512
0.850 0.421 0607 0.993 1.515

3rd
0.822 0.702 0.949 1.174 1.713
0.850 0.702 0.949 Ll75 1.719

5. CONCLUSIONS

In this paper, the free vibration of noncircular thick cylindrical shells having cir­
cumferential thickness variation has been studied by an improved thick shell theory. The
method of solution developed here is a general one applicable to arbitrary noncircular thick
cylindrical shells with varying thickness, although limited to shells having freely supported
ends. As numerical examples, natural frequencies and mode shapes were found for elliptical
cylindrical shells for which the thicknesses vary parabolically in the circumferential direc­
tion, and the results were compared with those obtained from thin shell theory. From these
results, it is clear that one should use the improved thick shell theory to obtain natural
frequencies of noncircular thick cylindrical shells with Po < 1000 because then the shear
deformation and rotary inertia have large influences upon the frequencies.
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APPENDIX: TERMS CONTAINED IN EQNS (26) AND (28)

n-I

+W 211l0 (2n + I) I (2p+ 2){'1o(G 211l0 F:_p+PoA:..p)Ap+ 1 +GF:_pDp+ .}
p-o

hh = -kGlIloPo(l-20D~(2n+2)An+' -G2I1loD~(2n+2)(Po+Glt1>oE~)Cn+ 1

+Jo [«(X~-13o'kl)A:_pBp-Gt1>o(;: F:_p+k'Po,D:_p)Ep-k'Po'G 2t1>oD:_p{Bp+(2p+2)Cp~ I}

+G311l~(2n+2)[GD~E:+,_p{(2p+ l)Bp-Cp}+(n+p+2)17n+ I-p' F~EpJ

+ poGlIlo{(2n+2)D:+ I-p -G:_p}[ -k(I-2,)Ap+G{(2p+ I)Bp-Cp)]]

n [ q+ 1 q

+ I - f3ok'GlIloA:_q L (q+p+ 1)'1Q+ I-p' Ap+k2'GlIloA:_q L E:_pEp
q_O p_O p=O



Vibrations of noncircular thick cylindrical shells
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Itt< = k"G(J)oDt(Po+G 2(J)oEt)(2n+ I)(GB.+ En)

+ t [(Il:-k2k'Po,)A:_,C,-kk'Po,A:_,Dp+PoG(J)oD:_p[-k(l-20Ap +G{C!p+ l)Bp-Cp}]J
,.0

.-1
+k'CG(J)o I HPo{(2n+ I)D:_, -G:_ 1_,} +G1(J)oDt(2n+ l)E:_,][G{B, -+-(2p+2)C,+ I} +E,ll,.0
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.-1
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If-I q+ I

+'G3(J)~ I {(2n+ 1)£.:'_q-H:_ I_q} I (q+p+ 1)17.+ I_,A,.
q_O ,_0

1M = -Gq(2n+ 2){G2(J)017oC.+ 1+k(I-2,)D.+ ,}

+JJGc:_,(e,- ;:)B,-C:_,(k
2C- ;:)E,-k'GC:_p(2P+2)Dp+I
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4-0 p.O
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p.o

Foreqn (28)

1M = kCGpoAt(2n+2)B."' 1+ t [(Il:-k2Po>A:_,A,+kGPo(l-20A:_p{(2P+2)Bp+,-C,}
,-0,
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q-O p.O ,-0

llIb = -kPoG(J)oD:<I -2C)(2n+ I)A.-G 2(J)oDt(2n+ 1)(.80+G 2(J)oEt)C.
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+GJ(J)~F:(2n+ 1)(n+p+ 1)1/.... I_,E,]
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+G4Io"f [{(2n+ I)D:_p-G:_ 1_p}[-kfJo(l-20Ap+G(fJo +G241oE~){ (2p+2)Bp+' -Cp)l
p_O
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+G{(2p+2)Bp+ I -Cp)] +k'(G$o[J1o{(2n+2)D':+ I-p -G':_,)
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